Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.077
Filtrar
1.
J Hazard Mater ; 471: 134287, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653132

RESUMO

Antibiotics can generally be detected in the water-sediment systems of lakes. However, research on the migration and transformation of antibiotics in water-sediment systems based on the influences of light and wind waves is minimal. To address this research gap, we investigated the specific impacts of light and wind waves on the migration and transformation of three antibiotics, norfloxacin (NOR), trimethoprim (TMP), and sulfamethoxazole (SMX), under simulated light and wind waves disturbance conditions in a water-sediment system from Taihu Lake, China. In the overlying water, NOR was removed the fastest, followed by TMP and SMX. Compared to the no wind waves groups, the disturbance of big wind waves reduced the proportion of antibiotics in the overlying water. The contributions of light and wind waves to TMP and SMX degradation were greater than those of microbial degradation. However, the non-biological and biological contributions of NOR to degradation were almost equal. Wind waves had a significant impact on the microbial community changes in the sediment, especially in Methylophylaceae. These results verified the influence of light and wind waves on the migration and transformation of antibiotics, and provide assistance for the risk of antibiotic occurrence in water and sediments.


Assuntos
Antibacterianos , Sedimentos Geológicos , Sulfametoxazol , Poluentes Químicos da Água , Vento , Antibacterianos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Sulfametoxazol/química , Sedimentos Geológicos/química , Norfloxacino/química , Trimetoprima/química , Lagos/química , China , Luz
2.
J Hazard Mater ; 470: 134258, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608588

RESUMO

Photochemical active species generated from photosensitizers, e.g., dissolved organic matter (DOM), play vital roles in the transformation of micropollutants in water. Here, butanedione (BD), a redox-active moiety in DOM and widely found in nature, was employed to photo-transform naproxen (NPX) with peracetic acid (PAA) and H2O2 as contrasts. The results obtained showed that the BD exhibited more applicable on NPX degradation. It works in the lake or river water under UV and solar irradiation, and its NPX degradation efficiency was 10-30 times faster than that of PAA and H2O2. The reason for the efficient transformation of pollutants is that the BD system was proved to be a non-free radical dominated mechanism. The quantum yield of BD (Ф254 nm) was calculated to be 0.064, which indicates that photophysical process is the dominant mode of BD conversion. By adding trapping agents, direct energy transfer from 3BD* to NPX (in anoxic environment) or dissolved oxygen (in aerobic environment) was proved to play a major role (> 91 %). Additionally, the BD process reduces the toxicity of NPX and promotes microbial growth after irradiation. Overall, this study significantly deepened the understanding of the transformation between BD and micropollutants, and provided a potential BD-based process for micropollutants removal under solar irradiation.


Assuntos
Naproxeno , Fotólise , Raios Ultravioleta , Poluentes Químicos da Água , Naproxeno/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Transferência de Energia , Peróxido de Hidrogênio/química , Ácido Peracético/química , Processos Fotoquímicos
3.
J Hazard Mater ; 470: 134113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565021

RESUMO

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Assuntos
Compostos de Metilmercúrio , Fotólise , Poluentes Químicos da Água , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/efeitos da radiação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/análise , Luz , Raios Ultravioleta , Nitratos/química , Nitratos/análise , Rios/química
4.
Chemosphere ; 346: 140609, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926165

RESUMO

Sulfate radical-based oxidation processes were investigated to understand the relationship between persulfate (PS) consumption and total organic carbon (TOC) removal from industrial wastewater under various PS concentrations. First, the degradation and mineralization of Bisphenol A (BPA) (initial concentration: 11 mg/L) were investigated in ultraviolet (UV)/PS systems. Complete degradation was achieved within 30 min of UV irradiation, and 41%-72% TOC removal was achieved at PS concentrations of 200 and 400 mg/L. The consumed concentration of S2O82- and generated concentration of SO42- increased gradually to similar levels. The ratio of the PS consumption to TOC removal based on the mass concentration (mg/L) was 14.5 and 23.2 at 180 min for 200 and 400 mg/L of S2O82-, respectively. Three types of coagulation-treated industrial wastewater from metal-processing, food-processing, and adhesive-producing plants were obtained, and TOC removal was analyzed using the same UV/PS systems (initial TOC concentration: 100 mg/L). The TOC removal rates ranged from 16.9% to 94.4% after 180 min of UV irradiation at PS concentrations of 1,000, 2,000, 4,000, and 8,000 mg S2O82-/L. Despite the higher TOC removal at higher PS concentrations, the PS activation efficiency decreased significantly as the PS concentration increased. Only approximately 30%-40% activation efficiency was achieved at a PS concentration of 8,000 mg/L. In this study, the ratio of PS consumption to TOC removal ranged from 20.6 to 43.9.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/efeitos da radiação , Oxirredução , Raios Ultravioleta , Sulfatos , Carbono , Peróxido de Hidrogênio
5.
Environ Sci Pollut Res Int ; 30(57): 120590-120604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945955

RESUMO

A comparative study on the mineralization of antibiotic trimethoprim (TMP) in neutral medium was investigated by applying irradiation with five types of ultraviolet lamps. Among these lamps, the whole envelope of one lamp contained ordinary quartz, which could only transmit ultraviolet-C (UVC) light. For the other four lamps, approximately one tenth, a quarter, a half, and full of envelopes were comprised of high-purity synthetic quartz, which can transmit both vacuum ultraviolet (VUV) and UVC light. TMP decay was well fitted to pseudo-first-order reaction kinetics and occurred more quickly as the VUV intensity increased. Poor mineralization was achieved in the absence of VUV light, whereas the mineralization efficiency was also enhanced with increasing VUV intensity. The presence of hydroxyl radicals (•OH), superoxide radicals (O2•-) and singlet oxygen (1O2) during VUV photolysis of water was confirmed by electron paramagnetic resonance (EPR) analysis. Appropriate radical quenching experiments and fluorescent molecular probe detection provided the evidence that •OH played a significant role in TMP mineralization. Higher VUV intensity favored the generation of H2O2 and •OH. The evolution of NH4+ and NO3- as well as carboxylic acids (formic, acetic, oxalic, and oxamic acids) released in the treated solution were quantified. Ten aromatic intermediates were also identified by UPLC-QTOF-MS. Thereby, a plausible reaction sequence for TMP mineralization in VUV/UVC photolysis was finally proposed.


Assuntos
Trimetoprima , Poluentes Químicos da Água , Vácuo , Peróxido de Hidrogênio , Quartzo , Raios Ultravioleta , Oxirredução , Fotólise , Poluentes Químicos da Água/efeitos da radiação
6.
Environ Sci Technol ; 57(49): 20813-20821, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032317

RESUMO

The photochemical degradation pathways of 6PPD-quinone (6PPDQ, 6PPD-Q), a toxic transformation product of the tire antiozonant 6PPD, were determined under simulated sunlight conditions typical of high-latitude surface waters. Direct photochemical degradation resulted in 6PPDQ half-lives ranging from 17.5 h at 20 °C to no observable degradation over 48 h at 4 °C. Sensitization of excited triplet-state pathways using Cs+ and Ar purging demonstrated that 6PPDQ does not decompose significantly from a triplet state relative to a singlet state. However, assessment of processes involving reactive oxygen species (ROS) quenchers and sensitizers indicated that singlet oxygen and hydroxyl radical do significantly contribute to the degradation of 6PPDQ. Investigation of these processes in natural lake waters indicated no difference in attenuation rates for direct photochemical processes at 20 °C. This suggests that direct photochemical degradation will dominate in warm waters, while indirect photochemical pathways will dominate in cold waters, involving ROS mediated by chromophoric dissolved organic matter (CDOM). Overall, the aquatic photodegradation rate of 6PPDQ will be strongly influenced by the compounding effects of environmental factors such as light screening and temperature on both direct and indirect photochemical processes. Transformation products were identified via UHPLC-Orbitrap mass spectrometry, revealing four major processes: (1) oxidation and cleavage of the quinone ring in the presence of ROS, (2) dealkylation, (3) rearrangement, and (4) deamination. These data indicate that 6PPDQ can photodegrade in cool, sunlit waters under the appropriate conditions: t1/2 = 17.4 h tono observable decrease (direct); t1/2 = 5.2-11.2 h (indirect, CDOM).


Assuntos
Benzoquinonas , Matéria Orgânica Dissolvida , Lagos , Fenilenodiaminas , Fotólise , Espécies Reativas de Oxigênio , Poluentes Químicos da Água , Benzoquinonas/química , Benzoquinonas/efeitos da radiação , Matéria Orgânica Dissolvida/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Fenilenodiaminas/química , Fenilenodiaminas/efeitos da radiação , Lagos/análise , Lagos/química
7.
Environ Pollut ; 338: 122681, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802288

RESUMO

Sulfonamide (SA) is an emerging contaminants and the efficient treatment of SA containing wastewater remains a challenge. Herein, SA degradation by gamma irradiation has been systematacially studied. SA (10 mg/L) could be totally removed with 1.5 kGy irradiation. Quenching experiments demonstrated that •OH and eaq- were the predominant for SA degradation. SA degradation was reduced with initial concentration increasing, and the removal was faster with pH increasing in the range of 3.1-10.8. The coexisting matters affected SA degradation through changing reactive species, and the introduction of SO42- and Cl- enhanced SA degradation, while CO32- had a negative impact on SA degradation, and the degradation was insignificantly affected when adding humic acid. Gamma irradiation could remain effective in real water matrixes. In conjunction with LC-MS analysis and DFT calculation, possible degradation pathways for SA were proposed. Gamma irradiation could reduce the toxicity of SA, while several byproducts with more toxic were also formed. Furthermore, gamma/priodate (PI) process was promising to enhance SA degradation and mineralization. k value increased by 1.85 times, and mineralization rate increased from 19.51% to 79.19% when adding PI. This study suggested that ionizing radiation was efficient to eliminate SA in wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Sulfanilamida , Águas Residuárias , Poluentes Químicos da Água/efeitos da radiação , Radiação Ionizante , Sulfonamidas , Água , Oxirredução
8.
Chemosphere ; 340: 139750, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37574083

RESUMO

Composition and source of dissolved organic matter (DOM) in water influence the rate of production of reactive intermediates (RIs), affecting the photodegradation of phenolic contaminants of emerging concern (PhCECs). However, this relationship has not been fully quantified. Here, for the first time, we propose a mechanism for photodegradation of a surrogate of PhCECs, p-cresol, in different DOM standard solutions under simulated sunlight irradiation. More importantly, the correlation of DOM optical parameters and p-cresol photodegradation kinetic parameters was determined by Pearson correlation. Results showed that indirect photodegradation was the only degradation pathway for p-cresol, mainly through reaction with excited triplet state of dissolved organic matter (3DOM*). Singlet oxygen (1O2) and hydroxyl radical (•OH) hindered degradation of p-cresol by decreasing the steady state concentration of 3DOM*. Moreover, less aromatic and smaller molecular size DOM showed higher steady-state concentration and quantum yield of 1O2, and 3DOM*, resulting in faster p-cresol photodegradation. Finally, 7 out of 8 optical parameters showed strong correlation with the p-cresol photodegradation rate constant. The mechanism and correlations found are a potential tool to predict PhCECs photodegradation in water using DOM optical parameters.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Poluentes Químicos da Água/efeitos da radiação , Água , Fenóis , Fotólise
9.
Chemosphere ; 336: 139311, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37356592

RESUMO

Antibiotic pollution in water is a growing threat to public health and the environment, leading to the spread of antimicrobial-resistant bacteria. While photocatalysis has emerged as a promising technology for removing antibiotics from water, its limited efficiency in the visible light range remains a challenge. In this study, we present a novel method for the photocatalytic degradation of tetracycline, the second most commonly used antibiotic worldwide, using α-Fe2O3/TiO2 nanocomposites synthesized via rapid sonochemical and wet impregnation methods. The nanocomposites were characterised and tested using a range of techniques, including BET, TEM, FTIR, XRD, FESEM, EDS, and UV-Vis. The RSM-CCD method was also used to optimize the degradation process by varying four key variables (initial concentration, photocatalyst quantity, irradiation time, and pH). The resulting optimized conditions achieved a remarkable degradation rate of 97.5%. We also investigated the mechanism of photodegradation and the reusability of the photocatalysts, as well as the effect of light source operating conditions. Overall, the results demonstrate the effectiveness of the proposed approach in degrading tetracycline in water and suggest that it may be a promising, eco-friendly technology for the treatment of water contaminated with antibiotics.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Catálise , Poluentes Químicos da Água/efeitos da radiação , Tetraciclina , Antibacterianos , Titânio , Água
10.
Water Sci Technol ; 87(5): 1082-1095, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36919735

RESUMO

Floating immobilized spherical titanium dioxide catalysts were used to degrade micro-pollutants by solar photocatalysis. The degradation of the micro-pollutants was performed in the secondary effluent of a wastewater treatment plant. During the experimental period, the continuous measurement of the solar ultraviolet (UV) radiation intensity was performed. The micro-pollutants were degraded to an average of 55% after 9 h of irradiation. A substance-specific degradation affinity was found, whereby degradation rates varied by a factor of up to 3.5. The substance-specific adsorption behavior was identified as a major limitation of the reaction performance. With an increasing influence of adsorption limitation, the degradation kinetics changed from the pseudo-first order to pseudo-zero order. A correlation between degradation rate and solar irradiance could only be found for substances with high degradation/adsorption affinity. For diclofenac, a 95% degradation rate could be achieved at a radiation dose of approximately 190 mWh/m². The investigated technology represents a promising possibility for a minimally invasive extension of wastewater treatment plants. Possibilities of implication were estimated and discussed within this work, whereby possibilities arise for large-scale as well as decentral treatment plants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Raios Ultravioleta , Poluentes Químicos da Água/efeitos da radiação , Titânio , Catálise
11.
Chemosphere ; 307(Pt 4): 136188, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36037955

RESUMO

Flowerlike Bi/BiOCl was prepared by one-pot hydrothermal method, where Bi(NO3)3 was used as Bi source, NiCl2 was used as employed as Cl source and co-catalyst, DMF was adopted as cosolvent and reducing agent. In the presence of NiCl2, the reduction of Bi(NO3)3 was accelerated. The prepared conditions were optimized. The prepared Bi/BiOCl showed high photocatalytic activity for rhodamine B (RhB) degradation within 200 s under visible light irradiation. The degradation efficiency and degradation reaction rate for Bi/BiOCl were 98.7% and 1.194 min -1, which was significantly better than that of BiOCl (6.6% and 0.0240 min -1). The improvement of photocatalytic activity was attributed to the successful in-situ formation of Bi metal in the sample, which greatly improved the visible light activity of BiOCl, increased the transfer rate of the photogenerated electron, and inhibited the recombination of photogenerated electron-hole pairs. The prepared Bi/BiOCl presented high cyclic stability and low Bi element leakage of 1.2 ng L-1. The conversion of N element in RhB was preliminarily studied, and the results showed that N element was effectively converted into ammonium. Moreover, the decreased toxicity after RhB degradation was investigated and confirmed by mung bean cultivation with RhB solution before and after degradation.


Assuntos
Compostos de Amônio , Poluentes Ambientais , Poluentes Químicos da Água , Luz , Substâncias Redutoras , Tecnologia , Poluentes Químicos da Água/efeitos da radiação
12.
Appl Radiat Isot ; 184: 110210, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334343

RESUMO

In this study the synergetic effect of gamma-ray and hydrogen peroxide on the degradation of carbaryl in aqueous solution were investigated. Aqueous solution of carbaryl was exposed to five different irradiation doses in the presence and absence of hydrogen peroxide. The intermediate species and aliphatic acids formed during irradiation were determined by Gas chromatography-Mass spectrometer and Ion Chromatography, respectively. It was found that the gamma-irradiation accelerate the degradation process of carbaryl with and without hydrogen peroxide. The inconstancy in pH, dissolved oxygen and total acidity was evaluated before and after treatment by gamma. It was found that the pH was decline from 6.71 to 5, dissolved oxygen from 2.64 to 0.9 mgL-1 and the total acidity was raised from 0.44 to 0.61 mgL-1. The entirely degradation of Carbaryl takes place at 3.0 kGy and 9.6 mM hydrogen peroxide, H2O2. As a consequence, the possible degradation pathway was suggested.


Assuntos
Carbaril , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Oxirredução , Oxigênio , Água/química , Poluentes Químicos da Água/efeitos da radiação
13.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443481

RESUMO

This study explores the capability of Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) for the simultaneous disinfection and decontamination of urban wastewater. Sulfate and hydroxyl radicals in solution were generated activating peroxymonosulfate (PMS) under UV-C irradiation at pilot plant scale. The efficiency of the process was assessed toward the removal of three CECs (Trimethoprim (TMP), Sulfamethoxazole (SMX), and Diclofenac (DCF)) and three bacteria (Escherichia coli, Enterococcus spp., and Pseudomonas spp.) in actual urban wastewater (UWW), obtaining the optimal value of PMS at 0.5 mmol/L. Under such experimental conditions, bacterial concentration ≤ 10 CFU/100 mL was reached after 15 min of UV-C treatment (0.03 kJ/L of accumulative UV-C radiation) for natural occurring bacteria, no bacterial regrowth was observed after 24 and 48 h, and 80% removal of total CECs was achieved after 12 min (0.03 kJ/L), with a release of sulfate ions far from the limit established in wastewater discharge. Moreover, the inactivation of Ampicillin (AMP), Ciprofloxacin (CPX), and Trimethoprim (TMP) antibiotic-resistant bacteria (ARB) and reduction of target genes (ARGs) were successfully achieved. Finally, a harmful effect toward the receiving aquatic environment was not observed according to Aliivibrio fischeri toxicity tests, while a slightly toxic effect toward plant growth (phytotoxicity tests) was detected. As a conclusion, a cost analysis demonstrated that the process could be feasible and a promising alternative to successfully address wastewater reuse challenges.


Assuntos
Peróxidos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Aliivibrio fischeri/efeitos dos fármacos , Antibacterianos/química , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Oxirredução , Plantas/efeitos dos fármacos , Sulfatos/química , Raios Ultravioleta , Águas Residuárias/análise , Águas Residuárias/microbiologia , Águas Residuárias/toxicidade , Poluentes Químicos da Água/efeitos da radiação
14.
Environ Sci Pollut Res Int ; 28(43): 60663-60675, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34164790

RESUMO

The cardiovascular drugs (CDDs), such as metoprolol (MET), atenolol (ATE), bezafibrate (BZB), and atorvastatin (ATO), have been frequently detected in the water environment. They can cause potential threats to the ecological environment and human health due to their "pseudo-persistence" effect. In this study, the photolysis kinetics, degradation mechanisms, by-products, influencing factors, and acute toxicity of these four typical CDDs under polychromatic ultraviolet irradiation (200-400 nm) were investigated. The results showed that the photolysis of ATE, BZB, MET, and ATO all followed pseudo-first-order kinetics, and their average photon quantum yields of the wavelength studied were 0.14×10-2, 0.33×10-3, 0.78×10-4, and 0.24×10-4 mol einstein-1, respectively. Singlet oxygen (1O2), hydroxyl radical (·OH), and the triplet-excited state of the cardiovascular drug (3CDD*) were all involved in the photolysis while 1O2 was the dominator. The effects of NO3-, Cl-, HCO3-, and humic acid (HA) on the photolysis were the combination of light-shielding, quenching, and excitation of reactive species. Seven, four, four, and nine photolysis products of ATO, BZB, ATE, and MET were identified, respectively, and their possible degradation pathways were proposed. The acute toxicity of ATE was basically unchanged during photolysis; however, ATO, BZB, and MET toxicity all increased due to the generation of ketonization and hydroxylation products.


Assuntos
Fármacos Cardiovasculares , Fotólise , Poluentes Químicos da Água , Atenolol/efeitos da radiação , Atorvastatina/efeitos da radiação , Bezafibrato/efeitos da radiação , Fármacos Cardiovasculares/efeitos da radiação , Substâncias Húmicas , Cinética , Metoprolol/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/efeitos da radiação
15.
Artigo em Inglês | MEDLINE | ID: mdl-33119463

RESUMO

This investigation implemented the nanomaterial rGOTiO2 for photodegradation of 2-nitrophenol solution at high concentrations. The 2-nitrophenol photodegradation was carried out in the presence of three kinds of light sources in the visible range spectrum. The results demonstrate that the nanomaterial rGOTiO2 is capable of pollutant degradation even in the low power light source (10 W), and have high activity under sunlight. The degradation of 2-nitrophenol was monitored by UV-vis spectroscopy, adjusting method by least squares for nonlinear functions. The equation represents the material photocatalytic activity under sunlight, which excludes climatic and variance factors. This equation predicts the pure rGOTiO2 behavior under sunlight; this will enable future research to develop more advanced processes.


Assuntos
Grafite/química , Luz , Modelos Teóricos , Nanoestruturas/química , Nitrofenóis/análise , Titânio/química , Poluentes Químicos da Água/análise , Catálise , Nitrofenóis/efeitos da radiação , Fotólise , Poluentes Químicos da Água/efeitos da radiação
16.
Artigo em Inglês | MEDLINE | ID: mdl-33174789

RESUMO

Zinc bacitracin (Zn-Bc) belongs to the group of nonribosomal peptide antibiotics (NRPA), comprising a mixture of non-biodegradable congeners characterized by complex structures containing cyclic, polycyclic, and branched chains. However, reports on the use of AOPs for the degradation of NRPA are non-existent. In this context, the present work investigated the photodegradation of Zn-Bc in aqueous solution by direct photolysis and the UVC/H2O2 process. The effects of the specific UVC photon emission rate and initial H2O2 concentration were studied following a Doehlert-design response surface approach. The results showed that all congeners photolyzed at the highest UVC doses in the absence of hydrogen peroxide, with a calculated quantum yield of 0.0141 mol Zn-Bc mol photons-1. However, no TOC removal was observed after 120 minutes of irradiation, suggesting the disruption of the peptide bonds in the antibiotic molecules without significant changes in the amino acid residues. The addition of H2O2 substantially accelerated Zn-Bc photodegradation, resulting in a remarkable removal of up to 71% of TOC. Most importantly, the antimicrobial activity against Staphylococcus aureus could be completely removed by both treatments. These findings point out that the UVC/H2O2 process can be straightly engineered for the treatment of metalloantibiotics-containing wastewater in pharmaceutical facilities.


Assuntos
Antibacterianos/análise , Bacitracina/análise , Peróxido de Hidrogênio/química , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Antibacterianos/efeitos da radiação , Bacitracina/efeitos da radiação , Modelos Teóricos , Oxirredução , Fotólise , Águas Residuárias/química , Poluentes Químicos da Água/efeitos da radiação
17.
Chemosphere ; 262: 128300, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182084

RESUMO

Metronidazole (MNZ) is a recalcitrant antibiotic with toxic and carcinogenic effects in aquatic environments. In this work, Fe5(PO4)4(OH)3·2H2O (giniite) particles were synthesised with three different alkaline cations (Li+, Na+ and K+) and used as Fenton catalysts for MNZ removal. It is shown that the addition of different cations during the hydrothermal synthesis process promote different morphologies from asterisk-like to flower-like and branches-like, maintaining the crystalline structure of pure giniite. The photo-Fenton activity of these particles was then evaluated through the degradation of MNZ under sunlight radiation for 9 h. The results indicate that the alkaline cation has a predominant role in the photo-Fenton efficiency, as demonstrated by the superior degradation efficiencies of Na@giniite particles (91.2% and 72.5% with giniite concentration of 0.2 g L-1 and 0.07 g L-1, respectively), related with its high surface area (10.7 m2 g-1). Thus, it is demonstrated the suitability of Na@giniite particles as Fenton catalyst for MNZ removal from water.


Assuntos
Antibacterianos/análise , Compostos Férricos/química , Peróxido de Hidrogênio/química , Ferro/química , Metronidazol/análise , Poluentes Químicos da Água/análise , Antibacterianos/efeitos da radiação , Catálise , Metronidazol/efeitos da radiação , Oxirredução , Processos Fotoquímicos , Porosidade , Luz Solar , Propriedades de Superfície , Poluentes Químicos da Água/efeitos da radiação
18.
J Hazard Mater ; 404(Pt B): 124082, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069994

RESUMO

Heterogeneous Fenton catalysts are emerging as excellent materials for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (e.g. SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The introduction of plasmonic materials with the Fenton catalysts broadens the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H2O2 etc.), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Luz , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catálise , Desinfecção , Substâncias Húmicas/análise , Estruturas Metalorgânicas/química , Minerais/química , Oxirredução , Fotoquímica , Espécies Reativas de Oxigênio/química , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
19.
Artigo em Inglês | MEDLINE | ID: mdl-33090933

RESUMO

The photocatalytic reduction of toxic Cr(VI) to non-pernicious Cr(III) using ZnFe2O4/EDTA (ethylenediaminetetraacetic acid) under UV irradiation was evaluated. The reduction of Cr(VI) with bare ZnFe2O4 under UV irradiation was negligible. However, the Cr(VI) in the solution was completely reduced within 3 h after the introduction of EDTA. EDTA could consume valence band holes and could be oxidized by holes into inorganic products. Therefore, photo-generated electrons could be used to reduce Cr(VI) to Cr(III). The effect of concentration of EDTA, ZnFe2O4 photocatalyst dosages, and initial pH on the photocatalytic reduction of Cr(VI) was investigated. The results revealed that the photocatalytic reduction of Cr(VI) accelerated by increasing EDTA concentration and ZnFe2O4 dosage. The present reduction process confirms the pseudo-first-order kinetic reaction. The quasi reduction rate constant increased from 3.5 x 10-4 min-1 to 2.6 x 10-2 min-1 with the increase in initial EDTA concentration from 0 to 1000 mg L-1. The acidic solution is preferable for the photocatalytic reduction of Cr(VI). The entire reduction of Cr(VI) was carried out within 2 h under the optimum conditions with pH 2, 20 mg ZnFe2O4, and 500 mg L-1 EDTA. The formation of [Cr-EDTA]3+ complex may be advantageous to accelerate the Cr(VI) reduction. A probable mechanism for the photocatalytic Cr(VI) reduction was speculated here.


Assuntos
Cromo/análise , Ácido Edético/química , Compostos Férricos/química , Raios Ultravioleta , Poluentes Químicos da Água/análise , Zinco/química , Catálise , Cromo/efeitos da radiação , Cinética , Imãs/química , Nanopartículas/química , Oxirredução , Fotólise , Poluentes Químicos da Água/efeitos da radiação
20.
Compr Rev Food Sci Food Saf ; 19(6): 3501-3527, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337035

RESUMO

Conventional technologies for the inactivation of microorganisms in food products have their limitations, especially changes in quality attributes that have led to quality deterioration, low consumer acceptance, impact on the environment, and potential health hazards (carcinogens). Ultraviolet (UV) light is an emerging promising nonthermal technology employed for microbial inactivation in water, liquid, and solid food products to curtail the limitations above. This review provides an insight into UV light-emitting diodes (UV-LEDs)' potential as an alternative to the traditional UV lamps for microbial inactivation in liquid and solid media. Also, the mechanisms of inactivation of lone and combined UVA-, UVB-, and UVC-LEDs were discussed. The strategies utilized to improve the efficacy between the UV-LED treatments at various wavelengths were summarized. Combining different UV-LEDs treatments at different wavelengths have a synergistic effect and suppression of microbial cell reactivation. The UV-LED-based advanced oxidation processes (AOPs) also have high germicidal action against numerous microorganisms and are efficient for the degradation of micropollutants. Among the UV-LEDs discussed, UVC-LED has the most antimicrobial effect with the most efficient micropollutants decomposition with regards to UV-LED-based AOPs. This review has provided vital information for future application, development, and customization of UV-LED systems that can meet the food and water safety requirements and energy efficiency.


Assuntos
Desinfecção/instrumentação , Desinfecção/métodos , Viabilidade Microbiana/efeitos da radiação , Raios Ultravioleta , Bactérias/efeitos da radiação , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Vírus/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA